GBGS Scheme

15MAT21

Second Semester B.E. Degree Examination, June/July 2016 **Engineering Mathematics - II**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

a. Solve: $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$.

(05 Marks)

b. Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$, using inverse differential operator method.

(05 Marks)

c. Solve: $\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$ by the method of variation of parameters.

(06 Marks)

2 a. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 1 + 3x + x^2$, using inverse differential operator method. (05 Marks)

b. Solve: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \cos x$, using inverse differential operator method. (05 Marks)

c. Solve: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x^2 + e^x$ by the method of undetermined coefficients. (06 Marks)

3 a. Solve: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)^2$

(06 Marks)

b. Solve: $y\left(\frac{dy}{dx}\right)^2 + (x-y)\frac{dy}{dx} - x = 0$.

(05 Marks)

c. Solve: $y = 2px + p^2y$ by solving for x.

(05 Marks)

a. Solve: $(3x + 2)^2 y'' + 3(3x + 2)y' - 36y = 8x^2 + 4x + 1$.

(06 Marks)

b. Solve: $y - 2px = tan^{-1}(xp^2)$

(05 Marks)

c. Solve the equation (px - y)(py + x) = 2p by reducing it into Clairaut's form by taking a substitution $X = x^2$ and $Y = y^2$. (05 Marks)

Module-3

a. Obtain the partial differential equation by eliminating the arbitrary functions, given that (05 Marks) $z = yf(x) + x\phi(y)$

b. Solve $\frac{\partial^2 u}{\partial x \partial y} = \frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x} = \log x$ when y = 1 and z = 0 when x = 1.

(05 Marks)

Derive the one dimensional wave equation in the form, $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ (06 Marks)

- Obtain the partial differential equation of the function, $f\left(\frac{xy}{z}, z\right) = 0$. (05 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} 4z = 0$, subject to the conditions z = 1 and $\frac{\partial z}{\partial x} = y$ when x = 0. (05 Marks)
 - c. Derive the one dimensional heat equation in the form $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$. (06 Marks)

Module-4

- 7 a. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{x} xyz dz dy dx$.
- (06 Marks)
- Evaluate $\iint \hat{x} \, dy \, dx$ by changing the order of integration.
- (05 Marks)
- Obtain the relation between beta and gamma function in the form

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$
 (05 Marks)

- 8 a. Evaluate $\int_{0.0}^{\infty} e^{-(x^2+y^2)} dxdy$ by changing into polar co-ordinates. (06 Marks)
 - b. Find the area enclosed by the curve $r = a(1 + \cos \theta)$ above the initial line. (05 Marks)
 - c. Prove that $\int_{0}^{2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{2} \sqrt{\sin \theta} d\theta = \pi$ (05 Marks)

- (06 Marks)
- 9 a. Evaluate: (i) $L\left\{\frac{\cos 2t \cos 3t}{t}\right\}$ (ii) $L\left\{t^2e^{-3t}\sin 2t\right\}$ (b. If $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a \end{cases}$, f(t + 2a) = f(t) then show that $L[f(t)] = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$. (05 Marks)
 - c. Solve by using Laplace transforms,

Solve by using Laplace transforms,

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}, y(0) = 0, y'(0) = 0$$
(05 Marks)

- 10 a. Evaluate $L^{-1}\left\{\frac{4s+5}{(s+1)^2(s+2)}\right\}$. (06 Marks)
 - b. Find $L^{-1}\left\{\frac{1}{s(s^2+a^2)}\right\}$ by using convolution theorem. (05 Marks)
 - Express $f(t) = \begin{cases} 1, & 0 < t \le 1 \\ t, & 1 < t \le 2 \\ t^2, & t > 2 \end{cases}$ in terms of unit step function and hence find its Laplace

transform. (05 Marks)